

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI:10.21276/ijcesr.2017.4.11.22
131

AN EFFICIENT DISTRIBUTION VERIFICATION PROTOCOL

(EDVP) FOR DATA STORAGE SECURITY IN CLOUD
COMPUTING

1N.Sudhir Reddy, 2J.Sushma, 3I.Tabitha, 4Brahmam
1,2,3,4 Assistant Professor

Department of Computer Science and Engineering
Malla Reddy College of Engineering, Hyderabad.

 Abstract -- Cloud Computing (CC) is an

emerging computing paradigm that provides
large amount of computing and storage to the
Clients provisioned as a service over the
internet in a pay-as you-go pricing model,
where the Clients pay only according to the
usage of their services. In this thesis, we
investigate this kind of security issues of cloud
storage and propose New Probabilistic
Efficient and Secure Protocols for data
storage security. To avoid integrity
availability & confidentiality for cloud
storage. To provide better security to the
consumers an efficient protocols and
methodologies are to be used for cloud in
order to store the data with third party
members the main problem is security so in
my thesis by using EDVP we can provide
better security to the customers in cloud.

Keywords – Cloud Computing, Storage,
Security, Clients, Service, Protocols, Data.

I. INTRODUCTION
This protocol implements the RSA-DPAP,

ECC-DPAP and PVDSSP in a distributed
manner which was discussed in chapters 5 and 6
respectively. Here, the n verifiers challenge the n
servers uniformly and if m server‘s response is
correct then, we can say that Integrity of data is
ensured as to verify the Integrity of the data, the
verification process uses multiple TPAs. Among
the multiple TPAs, one TPA will act as main
TPA and remaining are SUBTPAs. The main
TPA uses all SUBTPAs to detect data
corruptions efficiently, if main TPA fails, the

one of the SUBTPA will act as main TPA. The
SUBTPAs do not communicate with each other
and they would like to verify the Integrity of the
stored data in cloud, and the

163 consistency of the provider‘s responses.
The propose system guarantees atomic
operations to all TPAS; this means that TPA
which observe each SUBTPA operations are
consistent, in the sense that their own operations,
plus those operations whose effects they see,
have occurred atomically in same sequence. The
Centrally Controlled and Distributed Data
paradigm, where all SUBTPAs are The Centrally
Controlled and Distributed Data paradigm,
where all SUBTPAs are controlled by the TPA
and SUBTPA‘s communicate to any Cloud Data
Storage Server for verification. We consider a
synchronous distributed system with multiple
TPAs and Servers. Every SUBTPA is connected
to Server through a synchronous reliable channel
that delivers challenge to the server. The
SUBTPA and the server together are called
parties

P. A protocol specifies the behaviors of all
parties. An execution of P is a sequence of
alternating states and state transitions, called
events, which occur according to the
specification of the system components. All
SUBTPAs follow the protocol; in particular,
they do not crash. Every

SUBTPA has some small local trusted
memory, which serves to store distribution keys
and authentication values. The server might be
faulty or malicious and deviate arbitrarily from
the protocol such behavior is also called

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI:10.21276/ijcesr.2017.4.11.22
132

Byzantine failure. A party P that does not fail in
an execution is correct.

II. APPROACH
Here, the Coordinator will randomly generates

a bit string for each SUBTPA termed as Task
Distribution Key (TDK). Each SUBTPA will
successively apply their TDK on the generated
Sobol sequence as a mask up to the sequence
will exhaust and take the corresponding
sequence number as block number for
verification.

Fig. 1 Block Diagram of Distributed Audit

System Architecture
For example, consider the TDK for the

SUBTPA1 and SUBTPA2 are 10101 and 01010
respectively. Let, the generated Sobol random
sequence is {1216, 5312, 3264, 7360, 704, 4800,
2752, 6848, 1728}, where file blocks are
numbered from 0 to 8191. If we place the TDK
for SUBTPA1 on the left end of the generated
sequence and takes the block numbers
corresponding to the 1, after that we slides the
string to the right to the same length of the TDK
and apply the same procedure then it generates
the subtask for SUBTPA1 in (1) and similarly
for SUBTPA2 in (2).

1216, 5312, 3264, 7360, 704, 4800, 2752,
6848, 1728}

1 0 1 0 1

{1216, 5312, 3264, 7360, 704, 4800, 2752, 6848,1728}
 1 0 1 0 1

{1216, 3264, 704, 4800,
6848}

(1)

{1216, 5312, 3264, 7360, 704, 4800, 2752, 6848, 1728}
0 1 0 1 0

{1216, 5312, 3264, 7360, 704, 4800, 2752, 6848, 1728}

 0 1 1 0

(2)

In our protocols, we use two types of TDK for
uniformly distribute the task among SUBTPAs
and sometime, we adjust the TDK length to
balance the subtask for each SUBTPA.

III. THEORETICAL BACKGROUND
A. SOBOL SEQUENCE
Sobol Sequence [3], [4] is a low discrepancy,

quasi- random sequences that generates
sequences between the interval [0, 1). One
salient features of this sequence is that the
sequences are Our distributed verification
protocols are based on the probabilistic
verification scheme and we classify our
protocols into two different types depending on
the task distribution. First, we are describing our
basic protocol based on the simple partition
approach. In the second, we use TDK to partition
the task. To enhance the performance of our
protocols, we used (m, n) threshold scheme [15]
with <, where Coordinator can stop the audit
operation or detect the fault region after taking
responses from any subset of out of SUBTPAs,
because each subtask is uniformly distributed
over the entire file blocks due to use of Sobol
Sequence.

A. Protocol 1: Simple Partition with
Threshold Seheme

In the first protocol, the Coordinator randomly
chooses one Sobol random key , generate the
Sobol Random Block Sequence by using (⋅),
where consist one randomly chosen primitive
polynomial, of order out of (2−1)/ primitive
polynomials [4], randomly chosen initial values ,
where ∈ {1, 2, . . . , }, and values respectively. In
the next step, partition the generated sequence ℒ
by using partition function

(⋅), with partition length and denotes each
subsequence as , should maintain the
equivalence relation property and also maintain
the uniformity property. Algorithm 1 gives the
detail of key generation and Distribution phase.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI:10.21276/ijcesr.2017.4.11.22
133

ALGORITHM 1: KEY GENERATION &

DISTRIBUTION

uniformly distributed over the interval [0,

1). Also, it maintains uniformity for any
segment out of the sequence. That means Sobol
Sequence is segment wise uniform. For
generating this sequence, we need a primitive
polynomial, of degree over the finite field ℤ2,
and direction numbers[3].

Fig. 2. Modified de Bruijn Graph

Corresponding to the string 10010101
Our distributed verification protocols are

based on the probabilistic verification scheme
and we classify our protocols into two different
types depending on the task distribution. First,

we are describing our basic protocol based on the
simple partition approach. In the second, we use
TDK to partition the task. To enhance the
performance of our protocols, we used (m, n)
threshold scheme [15] with <, where
Coordinator can stop the audit operation or
detect the fault region after taking responses
from any subset of out of SUBTPAs, because
each subtask is uniformly distributed over the
entire file blocks due to use of Sobol Sequence.

A. Protocol 1: Simple Partition with
Threshold Seheme

In the first protocol, the Coordinator randomly
chooses one Sobol random key , generate the
Sobol Random Block Sequence by using (⋅),
where consist one randomly chosen primitive
polynomial, of order out of (2−1)/ primitive

polynomials [4], randomly chosen initial
values , where

∈ {1, 2, . . . , }, and values respectively. In the
next step, partition the generated sequence ℒ by
using partition function

(⋅), with partition length and denotes each
subsequence as , should maintain the
equivalence relation property and also

maintain the uniformity property. Algorithm 1
gives the detail of key generation and
Distribution phase.

IV. EFFICIENT DISTRIBUTED

 ANALYSIS OF PROTOCOL1
VERIFICATION PROTOCOL
Protocol 1 follows the Centrally Controlled

and Distributed Data paradigm, where all
SUBTPAs are controlled by the Coordinator but
communicate to any Cloud Data Storage Server
for verification. Here, Coordinator will decide
the partition length, , and divides the sequence to
each

. Due to the use of Sobol sequence each
subsequence must be uniform. After partitioning
the sequence, the Coordinator will send the
subsequence, , to each .

This protocol gives very good performance to
detect errors in the file blocks. Nevertheless, for
sending to , from the Coordinator takes extra
network band-width. Although, it can not take
any extra care about the critical data. To reduce
the bandwidth usage and increase the efficiency,
and also, taking extra care about critical data, we

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI:10.21276/ijcesr.2017.4.11.22
134

device the Task Distribution Key (TDK) to
divide the sequence to subsequences. Our second
scheme describes about TDK based techniques
in more details.

ALGORITHM

2:DISRTIBUTED CHALAND PROOF
VERIFI CATION()

B. Protocol 2: TASK DISTRIBUTION

KEY BASED DISTRIBUTIONSCHEME
In our second protocol, Coordinator and each

will know the Sobol random key, , for generating
the Sobol random sequence. In each new
verification, Coordinator decides the parameters
to generate the Sobol Random Key, and publicly
send to all . In addition, Coordinator generates
number of random TDKs, , and distributes
among SUBTPAs by using String Reconciliation
Protocol [1]with some modifications.

each SUBTPA will generate Sobol Random
Sequence and interpret their subsequence by
using their own TDK. We have given Sobol
Random key, TDK generation and distribution in
Algorithm 3. Algorithm 4, describes about
subtask interpretation, distributed challenge and
verification for protocol 2.

In this protocol, we use two types of TDKs,
one is Non-Overlapping TDK and another is
Overlapping TDK. Overlap-ping TDK will
apply when we want to verify critical data. We
give the steps for generating Non-Overlapping
TDK as follows:

ALGORITHM 3: KEY GENERATION &
DISTRIBUTION

ALGORITHM 4: DISTRIBUTED
CHALAND PROOF VERIFICA TION 2():

ANALYSIS OF PROTOCOL 2
In TDK generation phase, we take the mask

length as coprime to sequence length or prime
length, because after applying TDK on ℒ,
subsequence, ri, becomes non uniform, and to
make it uniform, we use these adjustment. In

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI:10.21276/ijcesr.2017.4.11.22
135

algorithm3, Coordinator generates Sobol
Random Key and send to the SUBTPAs. In
addition, send different TDK, , for each
SUBTPAi. In Algorithm 4, SUBTPAi generates
the Sobol Random sequence by using key, or and
stored in ℒ. Then, each SUBTPAi interpret their
task by using corresponding TDK, , and we
denoted subtask for SUBTPAias ri,j and.
defined as

ℒ= ∪
i∈[1,...,
n] j∈[1,...,
p]ri,j

where
p=
Sequence Lengtℎ TDK Lengtℎ+ £
£= Numberof1
′
sinfirst
(Sequence Lengtℎ% TDK Lengtℎ)

lengtℎinTDK
Then, SUBTPAi will calculate 10% of ri, and

creates challenge, Cℎali, and send to the
server and waits for the proof, PRi,. After
receiving the proof SUBTPA will verify with
the stored mata data, and if the proof is
correct then store TRUE in its table and if not
match then store FALSE and send a signal to
the Coordinator for corrupt file blocks. The
Coordinator will receive signals from any
subset of moutofn SUBTPAs and ensures the
fault location or stop the Audit operation. In
the final step, Main TPA will give the Audit
result to the Client.

Here, we generalize the integrity
verification protocol in a distributed manner.
Therefore, we can use our protocols on
existing RSA based [11] [13] or ECC [10]
based protocol to make distributed RSA or
ECC protocols. In the next section, we discuss
about the performance of our protocols.

V. IMPLEMENTATION AND EXPERIMENTAL

RESULTS
It is very natural that audit activities would

increase the communication and
computational overhead of audit services. To
enhance the performance, we used the String

Reconciliation Protocol to distribute the TDK
,that reduces the communication overhead
between Main TPA and SUBTPAs. For each
new verification Coordinator can change the
TDK for any SUBTPA and send only the
difference part of the multy set element to
the SUBTPA. In addition, we used
probabilistic verification scheme based on
Sobol Sequence that provides not only
uniformity for whole sequence but also for
each subsequence, so each SUBTPA will
independently verify over the whole file
blocks. Thus, there is a high probability to
detect fault location very efficiently and
quickly. Therefore, Sobol sequence provides
strong integrity proof for the remotely stored
data. Table I shows comparison between two
protocols.

TABLE I PERFORMANCE COMPARISON
BETWEEN TWO PROPOSED PROTOCOLS

 Protocol 1 Protocol 2

Coordinator Controlled

Privacy Preserving

Fault Detection

Coordinator Computation

Communication Complexity less
detection probability for Sobol Random

Sequence and Pseudo Random Sequence.
We have shown our experimental results in

Table II.

TABLE-II
DETECTION PROBABILITY FOR 1%

CORRUPTION OUT OF 300000 BLOCKS

VI. CONCLUSION
In this paper, we addressed the efficient

Distributed Verification protocol based on the
Sobol Random Sequence. We have shown that
our protocols uniformly distribute the task
among SUBTPAs. Most importantly, our

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI:10.21276/ijcesr.2017.4.11.22
136

protocols can handle failures of SUBTPAs due
to its uniform nature and also gives better
performance in case of unreliable
communication link. Here, we mainly focused
on the uniform task distribution among
SUBTPAs to detect the erroneous blocks as soon
as possible. We used String Reconciliation
Protocol to minimize the communication
bandwidth between Coordinator and SUBTPA
side. In addition, we reduce the workload at the
Server side and also reduce the chance of
network congestion at the Server side as well as
Coordinator side by distributing the task. Thus,
our Distributed Verification Protocol increases
the efficiency and robustness of data integrity in
Cloud Computing. Generate random block
numbers by using Sobol Random generator for a
given length, then it must be uniform. In
addition, if we simply partition the sequence into
subsequence and distributes among various
SUBTPAs, then each subsequence must be
maintain the uniformity. But, when we use TDK
then subtask may or may not be uniform. We
saw that when the TDK length is powers of 2,
then generated subtask does not maintain the
uniformity property. Because, Sobol sequence
maintain some pattern, if we take 4 consecutive
number then we can see that these numbers are
from four region over the Sequence, if we divide
the full sequence into four region, and for 8, 16,
32,. . . it also hold. When we placed the TDK
over the generated Sequence then Subtask
contain those numbers whose corresponding
TDK bit is 1 and successively applying this
 TDK to generate the subsequence. Thus, if
the TDK length power of two then for each
successive TDK shifting, the chosen block
numbers must be very close to each other and
form cluster. If, we take TDK length as prime
then in each successive shifting the chosen block
numbers are spreading over the segment.
Therefore, maintains the uniformity for each
subtask or subsequence. Now, if the TDK length
 is Coprime meangcd(TDKLengtℎ, Sequence
Lengtℎ) = 1Then there is no factor equals to the
power of 2, that means for each successive TDK
shifting block numbers are spreading over the
whole sequence and maintain the uniformity
property for each subtask. Therefore, generated
subtask must be uniform if the TDK length

relatively prime or prime to the sequence length

VII. REFERENCE
[1]. Aaram, Y., Chunhui, S., and Yongdae, K.,
―On Protecting Integrity and Confidentiality

of Cryptographic File System for Outsourced
Storageǁ, In proc.of CCSW‘09, Chicago,
Illinois,USA November 13, 2009.

[2]. Alexander, H., Bernardo, P.,
Charalampos, P., and Roberto, T., ―Efficient
Integrity Checking of Un trusted Network
Storageǁ, In Proceedings Of StorageSS‘08,
Fairfax, Virginia, October 31, 2008.

[3]. Alexander, S., Christian, C., Asaf, C., Idit,
K., Yan, M., and Dani, S., ―Venus: Verification
for Un trusted Cloud Storage, In Procedings Of
CCSW‘10, Chicago, Illinois, USA October8,
2010.

[4]. Amazon.com, Amazon Web Services
(AWS), Online at http://aws.amazon.com(2008).

[5]. Anjie P., and Lei W., ―One Publicly
Verifiable Secret Sharing Scheme based on
LinearCodeǁ, In Proc. Of 2010 2nd Conference on
Environmental Science and
InformationApplication Technology, Jul-2010,
pp.260- 262.

[6].Apple―ICloudǁOnlineat
http://www.apple.com/icloud/what-is.html2010.

[7]. Armbrust, M., Fox, A., Rean, G.,
Anthony, D. J., Randy, H. K., Andrew K.,
Gunho L,David, A. P., Ariel, R., Ion, S., and
Matei, Z., ―A view of cloud computingǁ,
Commun.ACM 53, 2010, pp.50–58.

[8]. Armbrust, M., Fox, A., Rean, G.,
Anthony, D., J.,, Randy., H. K., Andrew K.,
Gunho L,David, A., P., Ariel, R., Ion, S., and
Matei, Z., ―Above the Clouds: A Berkeley
View ofCloud Comput-ng,ǁ Tech. Rep.
UCBEECS-2009, Univ. California, Berkeley,
February 28,2009.

